A Comparison of Hierarchical Methods for Clustering Functional Data

نویسندگان

  • Laura Ferreira
  • David B. Hitchcock
چکیده

Functional data analysis (FDA) — the analysis of data that can be considered a set of observed continuous functions — is an increasingly common class of statistical analysis. One of the most widely used FDA methods is the cluster analysis of functional data; however, little work has been done to compare the performance of clustering methods on functional data. In this paper a simulation study compares the performance of four major hierarchical methods for clustering functional data. The simulated data varied in three ways: the nature of the signal functions (periodic, non-periodic, or mixed), the amount of noise added to the signal functions, and the pattern of the true cluster sizes. The Rand index was used to compare the performance of each clustering method. As a secondary goal, clustering methods were also compared when the number of clusters has been misspecified. To illustrate the results, a real set of functional data was clustered where the true clustering structure is believed to be known. Comparing the clustering methods for the real data set confirmed the findings of the simulation. This study yields concrete suggestions to future researchers to determine the best method for clustering their functional data.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Assessment of the Performance of Clustering Algorithms in the Extraction of Similar Trajectories

In recent years, the tremendous and increasing growth of spatial trajectory data and the necessity of processing and extraction of useful information and meaningful patterns have led to the fact that many researchers have been attracted to the field of spatio-temporal trajectory clustering. The process and analysis of these trajectories have resulted in the extraction of useful information whic...

متن کامل

Graph Clustering by Hierarchical Singular Value Decomposition with Selectable Range for Number of Clusters Members

Graphs have so many applications in real world problems. When we deal with huge volume of data, analyzing data is difficult or sometimes impossible. In big data problems, clustering data is a useful tool for data analysis. Singular value decomposition(SVD) is one of the best algorithms for clustering graph but we do not have any choice to select the number of clusters and the number of members ...

متن کامل

مقایسه نتایج خوشه‌بندی سلسله مراتبی و غیرسلسله مراتبی پروتئین‌های مرتبط با سرطان‌های مری، معده و کلون براساس تشابهات تفسیر هستی‌شناسی ژنی

Background and Objective: Using proteomic methodologies and advent of high-throughput (HTP) investigation of proteins has created a need for new approaches in bioinformatics analysis of experimental results. Cluster analysis is a suitable statistical procedure that can be useful for analyzing these data sets.   Materials and Methods: In this research study, the identified proteins associated wi...

متن کامل

به کارگیری روش‌های خوشه‌بندی در ریزآرایه DNA

Background: Microarray DNA technology has paved the way for investigators to expressed thousands of genes in a short time. Analysis of this big amount of raw data includes normalization, clustering and classification. The present study surveys the application of clustering technique in microarray DNA analysis. Materials and methods: We analyzed data of Van’t Veer et al study dealing with BRCA1...

متن کامل

Choosing the Best Hierarchical Clustering Technique Based on Principal Components Analysis for Suspended Sediment Load Estimation

1- INTRODUCTION The assessment of watershed sediment load is necessary for controling soil erosion and reducing the potential of sediment production. Different estimates of sediment amounts along with the lack of long-term measurements limits the accessibility to reliable data series of erosion rate and sediment yield. Therefore, the observed data of suspended sediment load could be used to ...

متن کامل

A New Method for Duplicate Detection Using Hierarchical Clustering of Records

Accuracy and validity of data are prerequisites of appropriate operations of any software system. Always there is possibility of occurring errors in data due to human and system faults. One of these errors is existence of duplicate records in data sources. Duplicate records refer to the same real world entity. There must be one of them in a data source, but for some reasons like aggregation of ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Communications in Statistics - Simulation and Computation

دوره 38  شماره 

صفحات  -

تاریخ انتشار 2009